If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+9p=0
a = 3; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·3·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*3}=\frac{-18}{6} =-3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*3}=\frac{0}{6} =0 $
| 4x^2+2x-9=9 | | 17x-42=2x-7x | | (x+7)^2=121 | | x+8/14=9/7+x-3/8 | | -54=6(x-6 | | 45=9-3h | | 0.1(x=250)=5000 | | (1/64)^x+2=8^2x | | (6x-9)(6x+9)=0 | | 6y-7=15y+11 | | 36=4(x+9 | | 4.7x=2.5x=8.8 | | 4x-1=-2(x+1) | | 4x+(-x)+2=-2x+12 | | 7x^2+3-x-40=2x^2-15x+70 | | 6y=3.6 | | -7v-5=2v^2 | | 12/42=2/x | | 50-3x=15=2x | | y-6+√(y=0 | | 10x+6=3x+6 | | y-6+√y=0 | | 4x/3=x+1/4 | | 7r^2+700=0 | | 1/2(x+12)=5 | | F(-2)=4x-5 | | -√6.x²-√6.x=0 | | 1=-9(2y-5)-2(2y-5) | | -√6x²-√6x=0 | | 2(x-4)^2+36=4 | | (x+2)(7x−11)=0 | | -1.1-6x=8.5 |